Sharp upper and lower bounds of the attractor dimension for 3D damped Euler–Bardina equations

A.A. Ilyin

Keldysh Institute of Applied Mathematics Russian Academy of Sciences

Partial Differential Equations in Mathematical Physics Conference in honour of Alexander Komech's 75th birthday 25 May, 2021

References

Joint work with Sergey Zelik and Anna Kostianko

- A.A. Ilyin and S.V. Zelik, Sharp dimension estimates of the attractor of the damped 2D Euler-Bardina equations.
 Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume of the European Mathematical Society edited by T.Weidl. R.L.Frank, P.Exner, F.Gesztesy.
- A.A. Ilyin, A.G. Kostianko, and S.V. Zelik. Sharp upper and lower bounds of the attractor dimension for 3D damped Euler–Bardina equations. finished last night

2d damped Euler system on the torus

We first consider the 2d damped/driven Euler system with periodic boundary conditions:

$$\begin{cases} \partial_t u + (u, \nabla_x)u + \gamma u + \nabla_x p = g, \\ \operatorname{div} u = 0, \quad u(0) = u_0. \end{cases}$$

The system is dissipative in $H^1(\mathbb{T}^2)$, $\mathbb{T}^2 = [0, L]^2$ and it is easy to construct a solution of class $L^{\infty}(0, T, H^1)$. However, the solution in this class is not known to be unique.

$$\int_{\mathbb{T}^2} (u, \nabla_x) u \cdot \Delta_x u \, dx = 0.$$

We add a vanishing viscosity term:

$$\begin{cases} \partial_t u + (u, \nabla_x)u + \nabla_x p + \gamma u = \nu \Delta_x u + g, \\ \operatorname{div} u = 0, \quad u(0) = u_0, \ x \in \mathbb{T}^2. \end{cases}$$

Then for $\nu > 0$ the solution is clearly unique and the semigroup of solution operators is defined $S(t)u_0 = u(t)$. The semigroup $S(t) : H \to H$

$$H:=L^2\cap \{\operatorname{div} u=0\}$$

has a global attractor in H.

Definition

Let S(t), $t \ge 0$, be a semigroup in a Banach space H. The set $\mathscr{A} \subset H$ is a global attractor of the semigroup S(t) if

1) The set \mathscr{A} is compact in *H*.

2) It is strictly invariant: $S(t) \mathscr{A} = \mathscr{A}$.

3) It attracts the images of bounded sets in *H* as $t \to \infty$, i.e., for every bounded set $B \subset H$ and every neighborhood $\mathcal{O}(\mathscr{A})$ of the set \mathscr{A} in *H* there exists $T = T(B, \mathcal{O})$ such that for all $t \ge T$

$$S(t)B \subset \mathcal{O}(\mathscr{A}).$$

Theorem (Ilyin, Miranville, Titi, 2004; Ilyin, Laptev, 2016) *The system*

$$\begin{cases} \partial_t u + (u, \nabla_x)u + \nabla_x p + \gamma u = \nu \Delta_x u + g, \\ \operatorname{div} u = 0, \quad u(0) = u_0, \ x \in \mathbb{T}^2 \end{cases}$$

has a global attractor in H with finite fractal dimension satisfying the following two sided order sharp (as $\nu \rightarrow 0^+$) estimate

$$1.5 \cdot 10^{-6} \frac{\|\operatorname{curl} g\|_{L^2}^2}{\nu \gamma^3} \leq \dim_F \mathscr{A}_{\nu} \leq \frac{3\pi}{256} \frac{\|\operatorname{curl} g\|_{L^2}^2}{\nu \gamma^3},$$

A.A. Ilyin (IPM)

Damped regularized Euler equations

25 May, 2021 6 / 36

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Damped/driven regularized Euler equations

We shall be dealing with a different approximation of the damped Euler system, namely, the so-called inviscid damped Euler–Bardina model

$$\begin{cases} \partial_t u + (\bar{u}, \nabla_x)\bar{u} + \gamma u + \nabla_x p = g, \\ \operatorname{div} u = 0, \quad u(0) = u_0, \quad \bar{u} = (1 - \alpha \Delta_x)^{-1} u. \end{cases}$$

The system is studied for d = 2, 3

1) on the torus $\Omega = \mathbb{T}^d = [0, L]^d$. In this case the standard zero mean condition is imposed on u, \bar{u} and g;

2) in the whole space $\Omega = \mathbb{R}^d$;

3) in a bounded domain $\Omega \subset \mathbb{R}^d$ with Dirichlet boundary conditions for

 \bar{u} . Then \bar{u} is recovered from u solving the Stokes problem

$$\begin{cases} (1 - \alpha \Delta_x) \bar{u} + \nabla_x q = u, \\ \operatorname{div} \bar{u} = 0, \quad \bar{u}|_{\partial \Omega} = 0. \end{cases}$$

Here $\alpha = \alpha' L^2$ and $\alpha' > 0$ is a small dimensionless parameter, so that \bar{u} is a smoothed (filtered) vector field.

A.A. Ilyin (IPM)

25 May, 2021 7 / 36

The phase space with respect to \bar{u} is the Sobolev space \mathbf{H}^1 with divergence free condition

$$\bar{u} \in \mathbf{H}^{1} := \begin{cases} \dot{\mathbf{H}}^{1}(\mathbb{T}^{d}), & x \in \mathbb{T}^{d}, \ \int_{\mathbb{T}^{d}} \bar{u}(x) dx = 0, \\ \mathbf{H}^{1}(\mathbb{R}^{d}), & x \in \mathbb{R}^{d}, \\ \mathbf{H}^{1}_{0}(\Omega), & x \in \Omega, \end{cases} \quad \text{div } \bar{u} = 0, \end{cases}$$

and in terms of *u*, respectively, $u \in \mathbf{H}^{-1} := (1 - \Delta_x)\mathbf{H}^1 = \mathbf{H}^{-1} \cap \{\text{div } u = 0\}.$ We write the equation as an evolution equation in \mathbf{H}^1 :

$$\partial_t \bar{u} + B(\bar{u}, \bar{u}) + \gamma \bar{u} = \bar{g},$$

div $\bar{u} = 0$, $\bar{u}(0) = \bar{u}_0$, $u = (1 - \alpha \Delta_x) \bar{u}$,

where

$$B(\bar{u},\bar{v})=(1-\alpha\Pi\Delta_x)^{-1}((\bar{u},\nabla_x)\bar{v}),$$

 Π — is the Helmholtz–Leray projection, $\Pi \Delta_x$ — is the Stokes operator.

Evolution equation in **H**¹

The bilinear operator *B* is smoothing in H^1 :

$$B: \mathbf{H}^1 imes \mathbf{H}^1 o \mathbf{H}^{2-arepsilon}, \ arepsilon > 0, \ d = 2, \qquad B: \mathbf{H}^1 imes \mathbf{H}^1 o \mathbf{H}^{3/2}, \ d = 3.$$

The equation is written as an evolution equation in \mathbf{H}^1 with *bounded* coefficients. Hence, the local in time existence of a unique solution is straightforward consequence of the Banach contraction principle, and the global existence follows from the a priori estimate

$$\|ar{u}(t)\|_{lpha}^2 \leq \|ar{u}(0)\|_{lpha}^2 e^{-\gamma t} + rac{1}{\gamma^2} \|g\|_{L^2}^2,$$

where

$$\|\bar{u}\|_{\alpha}^{2} := \|\bar{u}\|_{L^{2}}^{2} + \alpha \|\nabla_{x}\bar{u}\|_{L^{2}}^{2}.$$

Thus, the solution semigroup $S(t) : \mathbf{H}^1 \to \mathbf{H}^1$, $S(t)\bar{u}_0 = \bar{u}(t)$ is well defined, where $\bar{u}(t)$ is the solution at time *t*.

Main result 1: upper bounds

Theorem

Let d = 2. In each case of BC the system possesses a global attractor $\mathscr{A} \Subset \mathbf{H}^1$ with finite fractal dimension satisfying

$$\dim_{\mathcal{F}}\mathscr{A} \leq \frac{1}{8\pi} \cdot \begin{cases} \frac{1}{\alpha \gamma^4} \min\left(\|\operatorname{rot} g\|_{L^2}^2, \frac{\|g\|_{L^2}^2}{2\alpha} \right), & x \in \mathbb{T}^2, \ x \in \mathbb{R}^2, \\ \frac{\|g\|_{L^2}^2}{2\alpha^2 \gamma^4}, & x \in \Omega \subset \mathbb{R}^2. \end{cases}$$

In the 3D case d = 3 the estimate in all tree cases looks formally the same

$$\dim_F \mathscr{A} \leq \frac{1}{12\pi} \frac{\|g\|_{L^2}^2}{\alpha^{5/2} \gamma^4} \, .$$

4 A N

The lower bounds are based on the on the instability analysis of the generalized Kolmogorov flows. Let

$$g_s(x_2) = (\gamma \lambda(s) \sin sx_2, 0)^T, \qquad g_s(x_3) = (\gamma \lambda(s) \sin sx_3, 0, 0)^T$$

be the right-hand sides in our system on $\mathbb{T}^2 = [0, 2\pi]^2$ and $\mathbb{T}^3 = [0, 2\pi]^3$, respectively. Here $s \in \mathbb{N}$, $s \gg 1$, and λ is the amplitude. The corresponding staionary solutions are

$$u_s(x_2) = (\lambda(s) \sin sx_2, 0)^T, \qquad u_s(x_3) = (\lambda(s) \sin sx_3, 0, 0)^T.$$

Theorem

For $\lambda \geq \lambda(s)$, where

$$\lambda(\boldsymbol{s}) = \boldsymbol{c}_1 \gamma \frac{(1 + \alpha \boldsymbol{s}^2)^2}{\boldsymbol{s}},$$

and c_i are absolute (effectively computable) constants the stationary solutions are unstable and

$$\dim \mathcal{M}^{\mathrm{un}}(u_s) \geq c_2 s^2, \ d = 2; \qquad \dim \mathcal{M}^{\mathrm{un}}(u_s) \geq c_3 s^3, \ d = 3. \quad (0.1)$$

Corollary

A.

Under the above assumptions

$$\dim_{F} \mathscr{A} \geq c_{6} \begin{cases} \max\left(\frac{\|\operatorname{rot} g_{s}\|_{L^{2}}^{2}}{\alpha\gamma^{4}}, \frac{\|g_{s}\|_{L^{2}}^{2}}{\alpha^{2}\gamma^{4}}\right), & x \in \mathbb{T}^{2}, \\ \frac{\|g_{s}\|_{L^{2}}^{2}}{\alpha^{5/2}\gamma^{4}}, & x \in \mathbb{T}^{3}. \end{cases}$$
A. lyin (IPM) Damped regularized Euler equations 25 May, 2021 12/36

Since

$$\mathcal{M}^{\text{un}} \subset \mathscr{A} \quad \Rightarrow \quad \text{dim}\, \mathscr{A} \geq \text{dim}\, \mathcal{M}^{\text{un}}$$

it remains to express the number of unstable eigenmodes in terms of the physical parameters. The system is studied in the limit as $\alpha \to 0^+$ We set

$$s = \frac{1}{\sqrt{\alpha}}$$

Then λ and $||g_s||_{l^2}^2$ become

$$\lambda = c_4 \gamma \sqrt{\alpha}, \qquad \|g_s\|_{L^2}^2 = c_5 \gamma^4 \alpha,$$

and we obtain as a result

$$\dim_{\mathsf{F}}\mathscr{A} \ge c_3 s^3 = c_3 \frac{1}{\alpha^{3/2}} = c_3 \frac{\alpha \|g_s\|_{L^2}^2}{\alpha^{5/2} \|g_s\|_{L^2}^2} = c_3 \frac{\alpha \|g_s\|_{L^2}^2}{\alpha^{5/2} c_5 \alpha \gamma^4},$$

which proves the lower bound for \mathbb{T}^3 . For \mathbb{T}^2 we see that $\lambda \sim \gamma \sqrt{\alpha}$ and $\| \operatorname{rot} g_s \|_{L^2}^2 \sim \gamma^4$ and as before $\|g_s\|_{L^2}^2 \sim \gamma^4 \alpha$. Arguing similarly we obtain the lower bound for \mathbb{T}^2 .

(

A priori estimates

Proposition

Let u be a sufficiently regular solution of our equation. Then the following dissipative energy estimate holds:

$$\|\bar{u}(t)\|_{\alpha}^{2} \leq \|\bar{u}(0)\|_{\alpha}^{2}e^{-\gamma t} + \frac{1}{\gamma^{2}}\|g\|_{L^{2}}^{2},$$

where

$$\|\bar{u}\|_{\alpha}^{2} := \|\bar{u}\|_{L^{2}}^{2} + \alpha \|\nabla\bar{u}\|_{L^{2}}^{2}.$$

Taking the scalar product with \bar{u} , integrating over Ω we obtain

$$\begin{aligned} \frac{d}{dt} \left(\|\bar{u}\|_{L^2}^2 + \alpha \|\nabla_x \bar{u}\|_{L^2}^2 \right) + 2\gamma \left(\|\bar{u}\|_{L^2}^2 + \alpha \|\nabla_x \bar{u}\|_{L^2}^2 \right) &= 2(g,\bar{u}) \leq \\ &\leq 2 \|g\|_{L^2} \|\bar{u}\|_{L^2} \leq \gamma \|\bar{u}\|_{L^2}^2 + \frac{1}{\gamma} \|g\|_{L^2}^2. \end{aligned}$$

Applying the Gronwall inequality we complete the proof.

A.A. Ilyin (IPM)

Corollary

Let u be a sufficiently smooth solution. Then the following estimate holds (d = 2, 3 any type of the domain):

$$\limsup_{t\to\infty}\frac{1}{t}\int_0^t\|\nabla u(s)\|_{L^2}\,ds\leq \frac{1}{\gamma\sqrt{2\alpha}}\|g\|_{L^2}.$$

Indeed, integrating the differential inequality over *t*, taking the limit $t \to \infty$ and using the fact that $||u(t)||_{\alpha}^2$ remains bounded, we arrive at we obtain

$$\limsup_{t\to\infty}\frac{1}{t}\int_0^t \|\nabla u(s)\|_{L^2}^2\,ds\leq \frac{1}{2\alpha\gamma^2}\|g\|_{L^2}^2.$$

Using after that the Hölder inequality

$$\frac{1}{t}\int_0^t \|\nabla u(s)\|_{L^2}\,ds \leq \left(\frac{1}{t}\int_0^t \|\nabla u(s)\|_{L^2}^2\,dx\right)^{1/2}$$

we complete the proof.

A.A. Ilyin (IPM)

Use of vorticity equation for \mathbb{T}^2 and \mathbb{R}^2

Corollary

Let $\Omega = \mathbb{T}^2$ or \mathbb{R}^2 and let u be a sufficiently smooth solution of our problem. Then the following estimate holds:

$$\limsup_{t\to\infty}\frac{1}{t}\int_0^1 \|\nabla \bar{u}(s)\|_{L^2}\,ds\leq \frac{1}{\gamma}\min\left\{\|\operatorname{curl} g\|_{L^2},\frac{\|g\|_{L^2}}{\sqrt{2\alpha}}\right\}.$$

A.A. Ilyin (IPM)

Damped regularized Euler equations

25 May, 2021 16 / 36

4 A N

Theorem

Suppose that Ω is either the 3D torus \mathbb{T}^3 , or a bounded domain $\Omega \subset \mathbb{R}^3$ (endowed with Dirichlet BC), or the whole space $\Omega = \mathbb{R}^3$. Let $g \in [L^2(\Omega)]^d$ (in the case of \mathbb{T}^3 we also assume that g has zero mean). Then the global attractor \mathscr{A} corresponding to the regularized damped Euler system has finite fractal dimension satisfying the following estimate:

$$\dim_F \mathscr{A} \leq rac{1}{12\pi} rac{\|g\|_{L^2}^2}{lpha^{5/2} \gamma^4}$$
 .

A B K A B K

The linearized operator:

$$\begin{split} \partial_t \bar{\theta} &= -\gamma \bar{\theta} - \mathcal{B}(\bar{u}(t), \bar{\theta}) - \mathcal{B}(\bar{\theta}, \bar{u}(t)) =: L_{u(t)} \bar{\theta}, \\ \operatorname{div} \bar{\theta} &= \mathbf{0}, \ \bar{\theta}\big|_{t=0} = \bar{\theta}_0 \in \mathbf{H}^1(\Omega), \end{split}$$

where $B(\bar{u}, \bar{v}) := \prod A_{\alpha}((\bar{u}, \nabla_x)\bar{v})$. In order to utilize the well-known cancelation property

 $(\bar{u}, \nabla_x)\bar{\theta}, \bar{\theta}) \equiv 0$

for the inertial term in the Navier-Stokes equations, it is natural to endow the space \mathbf{H}^1 with the scalar product

$$(\bar{\theta},\bar{\xi})_{\alpha} = (\bar{\theta},\bar{\xi}) + \alpha(\nabla_{\mathbf{x}}\bar{\theta},\nabla_{\mathbf{x}}\bar{\xi}) = ((1-\alpha A)\bar{\theta},\bar{\xi}).$$

Then we get the cancelation

$$(B(\bar{u},\bar{\theta}),\bar{\theta})_{\alpha} = \left((1-\alpha\Delta_{x})^{-1}(\bar{u},\nabla_{x})\bar{\theta},(1-\alpha\Delta_{x})\bar{\theta}\right) = ((\bar{u},\nabla_{x})\bar{\theta},\bar{\theta}) \equiv 0$$

We estimate the global Lyapunov exponents which control the dimension:

$$q(n) := \limsup_{t \to \infty} \sup_{u(t) \in \mathscr{A}} \sup_{\{\bar{\theta}_j\}_{j=1}^n} \frac{1}{t} \int_0^t \sum_{j=1}^n (L_{u(\tau)}\bar{\theta}_j, \bar{\theta}_j)_{\alpha} d\tau,$$

where the first (inner) supremum is taken over all orthonormal families $\{\bar{\theta}_j\}_{i=1}^n$ with respect to the scalar product $(\cdot, \cdot)_{\alpha}$ in **H**¹:

$$(\bar{\theta}_i, \bar{\theta}_j)_{\alpha} = \delta_{ij}, \quad \operatorname{div} \theta_j = \mathbf{0},$$

and the second (middle) supremum is over all trajectories u(t) on the attractor \mathscr{A} . Then, using the cancellation mentioned above together with the pointwise estimate

$$\sum_{j=1}^{n} (L_{u(t)}\bar{\theta}_{j},\bar{\theta}_{j})_{\alpha} = -\sum_{j=1}^{n} \gamma \|\bar{\theta}_{j}\|_{\alpha}^{2} - \sum_{j=1}^{n} ((\bar{\theta}_{j},\nabla_{x})\bar{u},\bar{\theta}_{j}) \leq \\ \leq -\gamma n + \sqrt{\frac{2}{3}} \int_{\Omega} \rho(x) |\nabla_{x}\bar{u}(t,x)| dx \leq -\gamma n + \sqrt{\frac{2}{3}} \|\nabla_{x}\bar{u}(t)\|_{L^{2}} \|\rho\|_{L^{2}},$$

where

$$\rho(x) = \sum_{j=1}^n |\bar{\theta}_j(x)|^2.$$

We now use estimate

$$\|\rho\|_{L^2} \le \frac{1}{2\sqrt{\pi}} \frac{n^{1/2}}{\alpha^{3/4}}$$

and obtain

$$\sum_{j=1}^n (L_{u(t)}\bar{\theta}_j,\bar{\theta}_j)_{\alpha} \leq -\gamma n + \frac{1}{\sqrt{6}\pi} \frac{n^{1/2}}{\alpha^{3/4}} \|\nabla_x \bar{u}(t)\|_{L^2}.$$

Finally, using the estimate on the attractor , we arrive at

$$q(n) \leq -\gamma n + \frac{1}{2\sqrt{3\pi}} \frac{n^{1/2}}{\alpha^{5/4}} \frac{\|g\|_{L^2}}{\gamma}$$

It only remains to recall that, according to the general theory, any number n^* for which $q(n^*) \le 0$ an upper bound both for the Hausdorff and the fractal dimension of the global attractor \mathscr{A} . This gives the desired estimate

A.A. Ilyin (IPM)

25 May, 2021 20 / 36

$$q(n) \leq -\gamma n + \frac{1}{2\sqrt{3\pi}} \frac{n^{1/2}}{\alpha^{5/4}} \frac{\|g\|_{L^2}}{\gamma}.$$

Therefore

$$\dim_{F} \mathscr{A} \leq \frac{1}{12\pi} \frac{\|g\|_{L^{2}}^{2}}{\alpha^{5/2} \gamma^{4}}$$

Damped regularized Euler equations

イロト イロト イヨト イヨト

Spectral inequalities

Theorem

Let $\Omega \subseteq \mathbb{R}^d$ be an arbitrary domain. Let a family of vector functions $\{\bar{\theta}_i\}_{i=1}^n \in \mathbf{H}^1(\Omega)$ with div $\bar{\theta}_i = 0$ be orthonormal with respect to the scalar product

$$m^2(\bar{\theta}_i,\bar{\theta}_j)_{L^2} + (\nabla\bar{\theta}_i,\nabla\bar{\theta}_j)_{L^2} = m^2(\bar{\theta}_i,\bar{\theta}_j)_{L^2} + (\operatorname{curl}\bar{\theta}_i,\operatorname{curl}\bar{\theta}_j)_{L^2} = \delta_{ij}$$

Then the function $\rho(x) := \sum_{j=1}^{n} |\bar{\theta}_{j}(x)|^{2}$ satisfies

$$\|
ho\|_{L^2} \le rac{1}{2\sqrt{\pi}} rac{n^{1/2}}{m}, \qquad d=2, \ \|
ho\|_{L^2} \le rac{1}{2\sqrt{\pi}} rac{n^{1/2}}{m^{1/2}}, \qquad d=3.$$

We first let $\Omega = \mathbb{R}^d$ and introduce the operators

$$\mathbb{H} = V^{1/2} (m^2 - \Delta_x)^{-1/2} \Pi, \quad \mathbb{H}^* = \Pi (m^2 - \Delta_x)^{-1/2} V^{1/2}$$

acting in $[L^2(\mathbb{R}^d)]^d$, where $V \in L^1(\mathbb{R}^d)$ is a non-negative scalar function which will be specified below and Π is the Helmholtz–Leray projection. We define a compact self-adjoint operator **K**

$$\mathbf{K} = \mathbb{H}^*\mathbb{H} : [L^2(\mathbb{R}^d)]^d \to [L^2(\mathbb{R}^d)]^d.$$

Then

$$\operatorname{Tr} \mathbf{K}^{2} = \operatorname{Tr} \left(\Pi (m^{2} - \Delta_{x})^{-1/2} V (m^{2} - \Delta_{x})^{-1/2} \Pi \right)^{2} \leq \\ \leq \operatorname{Tr} \left(\Pi (m^{2} - \Delta_{x})^{-1} V^{2} (m^{2} - \Delta_{x})^{-1} \Pi \right) = \\ = \operatorname{Tr} \left(V^{2} (m^{2} - \Delta_{x})^{-2} \Pi \right),$$

where we used the Araki-Lieb-Thirring inequality for traces

$$\operatorname{Tr}(BA^2B)^p \leq \operatorname{Tr}(B^pA^{2p}B^p), \quad p \geq 1,$$

and the cyclicity property of the trace together with the facts that Π commutes with the Laplacian and that Π is a projection: $\Pi^2 = \Pi$.

A.A. Ilyin (IPM)

Damped regularized Euler equations

25 May, 2021 23 / 36

We want to show that

Tr
$$\mathbf{K}^2 \leq \begin{cases} rac{1}{4\pi} rac{1}{m^2} \|V\|_{L^2}^2, & d=2; \\ rac{1}{4\pi} rac{1}{m} \|V\|_{L^2}^2, & d=3. \end{cases}$$

The fundamental solution of $(m^2 - \Delta_x)^2 \Pi$ in \mathbb{R}^d is a $d \times d$ matrix

$$\mathbf{F}_{ij}^{d}(x) = G_{d}(x)\delta_{ij} - \partial_{x_{i}}\partial_{x_{j}}\Delta^{-1}G_{d}(x)$$

with \mathbb{R}^d -trace at $x \in \mathbb{R}^d$

$$\operatorname{Tr}_{\mathbb{R}^d} \mathbf{F}^d(x) = dG_d(x) - \sum_{i=1}^d \partial_{x_i x_i}^2 \Delta_x^{-1} G_d(x) = (d-1)G_d(x),$$

where $G_d(x)$ is a fundamental solution of the scalar operator $(m^2 - \Delta_x)^2$ in the whole space \mathbb{R}^d :

$$G_{d}(x) = \frac{1}{(2\pi)^{d}} \int_{\mathbb{R}^{d}} \frac{e^{i\xi x} d\xi}{(m^{2} + |\xi|^{2})^{2}} = \begin{cases} \frac{1}{8\pi} \frac{1}{m} e^{-|x|m}, & d = 3; \\ \frac{1}{4\pi} \frac{1}{m^{2}} |x| m \mathcal{K}_{1}(|x|m), & d = 2. \end{cases}$$
A.A. livin (IPM) Damped regularized Euler equations 25 May 2021 24/36

Stein, Watson

$$G_{2}(x) = \frac{1}{2\pi} \mathscr{F}^{-1}\left((m^{2} + |\xi|^{2})^{2}\right) = \frac{1}{2\pi} \int_{0}^{\infty} \frac{J_{0}(|x|r)rdr}{(m^{2} + r^{2})^{2}} = \frac{1}{4\pi} \frac{1}{m^{2}} |x| m \mathcal{K}_{1}(|x|m)$$

where K_1 is the modified Bessel function of the second kind. Thus, the operator $V^2(m^2 - \Delta_x)^2\Pi$ has the matrix-valued integral kernel

$$V(y)^2 \mathbf{F}^d(x-y)$$

and therefore

$$\operatorname{Tr}(V^{2}(m^{2} - \Delta_{x})^{2}\Pi) = \int_{\mathbb{R}^{d}} \operatorname{Tr}_{\mathbb{R}^{d}}(V(y)^{2} \mathbf{F}^{d}(0)) dy = (d - 1) \|V\|_{L^{2}}^{2} G_{d}(0)$$

which the first inequality , and also the second one, since $(tK_1(t))|_{t=0} = 1.$

A (1) > A (1) > A (1)

We can now complete the proof as in in the original paper by E.Lieb. Setting

$$\psi_i := (m^2 - \Delta_x)^{1/2} \bar{\theta}_i,$$

we see that $\{\psi_j\}_{j=1}^n$ is an orthonormal family in L^2 . We observe that

$$\int_{\mathbb{R}^d} \rho(\mathbf{x}) V(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^n \|\mathbb{H}\psi_i\|_{L^2}^2,$$

and in view of orthonormality of the ψ_j 's in L^2 we obtain

$$\sum_{i=1}^{n} \|\mathbb{H}\psi_i\|_{L^2}^2 = \sum_{i=1}^{n} (\mathbf{K}\psi_i, \psi_i) \le \sum_{i=1}^{n} \|\mathbf{K}\psi_i\|_{L^2} \le n^{1/2} \left(\sum_{i=1}^{n} \|\mathbf{K}\psi_i\|_{L^2}^2\right)^{1/2} = n^{1/2} \left(\sum_{i=1}^{n} (\mathbf{K}^2\psi_i, \psi_i)\right)^{1/2} \le n^{1/2} \left(\operatorname{Tr} \mathbf{K}^2\right)^{1/2}.$$

This gives

$$\int_{\mathbb{R}^d} \rho(x) V(x) dx \le n^{1/2} \left(\operatorname{Tr} \mathbf{K}^2 \right)^{1/2}$$

A.A. Ilyin (IPM)

Damped regularized Euler equations

25 May, 2021 26 / 36

Setting $V(x) := \rho(x)$ and using

$$\operatorname{Tr} \mathbf{K}^{2} \leq \begin{cases} \frac{1}{4\pi} \frac{1}{m^{2}} \|V\|_{L^{2}}^{2}, & d = 2; \\ \frac{1}{4\pi} \frac{1}{m} \|V\|_{L^{2}}^{2}, & d = 3. \end{cases}$$

we complete the proof of for the case of $\Omega = \mathbb{R}^d$, d = 2, 3. For a proper domain we use extension be zero which works nicely here. The theorem is proved.

Corollary

Let the assumptions of the Theorem hold and let $\{\bar{\theta}_j\}_{j=1}^n$, div $\bar{\theta}_j = 0$ be an orthonormal system with respect to

$$(\bar{\theta}_i, \bar{\theta}_j)_{L^2} + \alpha (\nabla \bar{\theta}_i, \nabla \bar{\theta}_j)_{L^2} = \delta_{ij}.$$

Then $\rho(x) = \sum_{j=1}^{n} |\bar{\theta}_j(x)|^2$ satisfies

$$\|
ho\|_{L^2} \leq rac{1}{2\sqrt{\pi}} rac{n^{1/2}}{lpha^{1/2}}, \qquad d=2, \ \|
ho\|_{L^2} \leq rac{1}{2\sqrt{\pi}} rac{n^{1/2}}{lpha^{3/4}}, \qquad d=3.$$

Indeed, this statement follows from that with m^2 by the proper scaling.

Spectral inequalities on T^2 and \mathbb{T}^3

Now $G_d(x) = G_{d,m}(x)$ is the fundamental solution of the scalar operator $(m^2 - \Delta_x)^{-2}$ on the torus \mathbb{T}^d (with zero mean condition), so the integral should be replaced by the corresponding sum over the lattice $\mathbb{Z}_0^d = \mathbb{Z}^d \setminus \{0\}$:

$$G_d(x) = rac{1}{(2\pi)^d} \sum_{k \in \mathbb{Z}_0^d} rac{e^{ik.x}}{(m^2 + |k|^2)^2}$$

and we have to show that

$$G_{d,m}(0) < \left\{ egin{array}{c} rac{1}{8\pi}rac{1}{m}, & d=3; \ rac{1}{4\pi}rac{1}{m^2}, & d=2. \end{array}
ight.$$

In other words, we have to show that

A.A. Ilyin (IPM)

25 May, 2021 29 / 36

Estimates for lattice sums

$$egin{aligned} &m\sum_{k\in\mathbb{Z}_0^3}rac{1}{(|k|^2+m^2)^2}<\pi^2 & d=3\ &m^2\sum_{k\in\mathbb{Z}_0^2}rac{1}{(|k|^2+m^2)^2}<\pi & d=2. \end{aligned}$$

A.A. Ilyin (IPM)

Damped regularized Euler equations

25 May, 2021 30 / 36

æ

Lemma

For $m \ge 0$

$$F(m) := m^2 \sum_{k \in \mathbb{Z}_0^2} \frac{1}{(|k|^2 + m^2)^2} < \pi.$$

We assume that $m \ge 1$. We show below that the inequality holds for $m \ge 1$, which proves the Lemma, since F'(m) > 0 on $m \in (0, 1]$ and F is increasing on $m \in [0, 1]$.

We use the Poisson summation formula

$$\sum_{k\in\mathbb{Z}^d}f(k/m)=(2\pi)^{d/2}m^d\sum_{k\in\mathbb{Z}^d}\widehat{f}(2\pi km),$$

where $\mathcal{F}(f)(\xi) = \widehat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-i\xi x} dx$. For the function $f(x) = 1/(1+|x|^2)^2$, $x \in \mathbb{R}^2$, with $\int_{\mathbb{R}^2} f(x) dx = \pi$, this gives

$$F(m) = \frac{1}{m^2} \sum_{k \in \mathbb{Z}^2} f(k/m) - \frac{1}{m^2} f(0) = \pi - \frac{1}{m^2} + 2\pi \sum_{k \in \mathbb{Z}^2_0} \widehat{f}(2\pi mk).$$

Since f is radial we have

$$\widehat{f}(\xi) = \int_0^\infty \frac{J_0(|\xi|r)rdr}{(1+r^2)^2} = \frac{|\xi|}{2}K_1(|\xi|),$$

where K_1 is the modified Bessel function of the second kind. Therefore we have to show that

$$\sum_{k\in\mathbb{Z}_0^2} G(2\pi m|k|) < \frac{1}{m^2}, \quad G(x) = \pi x K_1(x).$$

Next, we use the estimate

$$K_1(x) < \left(1+rac{1}{2x}\right)\sqrt{rac{\pi}{2x}}e^{-x}, \ x > 0,$$

which gives

$$G(2\pi m|k|) < \pi \left(\pi \sqrt{m|k|} + rac{1}{4\sqrt{m|k|}}
ight) e^{-2\pi m|k|}.$$

Damped regularized Euler equations

25 May, 2021 32 / 36

For the first term we use that

$$\sqrt{x}e^{-ax} \leq \frac{1}{\sqrt{2ea}}$$

with $a = \frac{1}{2}\pi m$ and x = |k| (and keep three quarters of the negative exponent), while for the second term we just replace $1/\sqrt{m|k|}$ by 1, since $m \ge 1$ and $k \ge 1$. This gives

$$G(2\pi m|k|) < \pi \left(\sqrt{rac{\pi}{e}} e^{-3\pi m|k|/2} + rac{1}{4} e^{-2\pi m|k|}
ight)$$

Furthermore, we use that $|k| \ge \frac{1}{\sqrt{2}}(|k_1| + |k_2|)$ and, therefore,

$$G(2\pi m|k|) < \pi \left(\sqrt{\frac{\pi}{e}} e^{\frac{-3\pi m(|k_1|+|k_2|)}{2\sqrt{2}}} + \frac{1}{4} e^{-\sqrt{2}\pi m(|k_1|+|k_2|)} \right).$$

25 May, 2021 33 / 36

Thus, summing the geometric power series, we end up with

$$F(m) < \pi - \frac{1}{m^2} + \pi \sqrt{\frac{\pi}{e}} \left(\frac{4}{(e^{\frac{3\pi}{2\sqrt{2}}m} - 1)^2} + \frac{4}{e^{\frac{3\pi}{2\sqrt{2}}m} - 1} \right) + \frac{\pi}{4} \left(\frac{4}{(e^{\sqrt{2}\pi m} - 1)^2} + \frac{4}{e^{\sqrt{2}\pi m} - 1} \right)$$

and finally show that

$$-\frac{1}{m^2} + \pi \sqrt{\frac{\pi}{e}} \left(\frac{4}{(e^{\frac{3\pi}{2\sqrt{2}}m} - 1)^2} + \frac{4}{e^{\frac{3\pi}{2\sqrt{2}}m} - 1} \right) + \frac{\pi}{4} \left(\frac{4}{(e^{\sqrt{2}\pi m} - 1)^2} + \frac{4}{e^{\sqrt{2}\pi m} - 1} \right) < 0$$

for $m \ge 1$.

25 May, 2021 34 / 36

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A poinwise estimate

Proposition

Let for some $x \in \mathbb{R}^d$, $u(x) \in \mathbb{R}^d$ and div u(x) = 0. Then

$$|\left((heta,
abla_x)u, heta
ight)(x)| \leq \sqrt{rac{d-1}{d}} | heta(x)|^2 |
abla_x u(x)|,$$

where $\nabla_x u(x)$ is a $d \times d$ matrix with entries $\partial_i u_i$, and

$$|\nabla_x u|^2 = \sum_{i,j=1}^d (\partial_i u_j)^2.$$

Thank you for your attention

3 + 4 = +