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2d damped Euler system on the torus

We first consider the 2d damped/driven Euler system with periodic

boundary conditions:

{
∂tu + (u,∇x )u + γu +∇xp = g,
div u = 0, u(0) = u0.

The system is dissipative in H1(T2), T2 = [0,L]2 and it is easy to

construct a solution of class L∞(0,T ,H1). However, the solution in this

class is not known to be unique.

∫

T2

(u,∇x )u ·∆xu dx = 0.
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Navier–Stokes regularization

We add a vanishing viscosity term:

{
∂tu + (u,∇x )u +∇xp + γu = ν∆xu + g,

div u = 0, u(0) = u0, x ∈ T
2.

Then for ν > 0 the solution is clearly unique and the semigroup of

solution operators is defined S(t)u0 = u(t). The semigroup

S(t) : H → H

H := L2 ∩ {div u = 0}
has a global attractor in H.
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Global attractor

Definition

Let S(t), t ≥ 0, be a semigroup in a Banach space H. The set A ⊂ H

is a global attractor of the semigroup S(t) if

1) The set A is compact in H.

2) It is strictly invariant: S(t)A = A .

3) It attracts the images of bounded sets in H as t → ∞, i.e., for every

bounded set B ⊂ H and every neighborhood O(A ) of the set A in H

there exists T = T (B,O) such that for all t ≥ T

S(t)B ⊂ O(A ).
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Theorem (Ilyin, Miranville, Titi, 2004; Ilyin, Laptev, 2016)

The system

{
∂tu + (u,∇x )u +∇xp + γu = ν∆xu + g,

div u = 0, u(0) = u0, x ∈ T
2

has a global attractor in H with finite fractal dimension satisfying the

following two sided order sharp (as ν → 0+) estimate

1.5 · 10−6
‖ curl g‖2

L2

νγ3
≤ dimF Aν ≤ 3π

256

‖ curl g‖2
L2

νγ3
,
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Damped/driven regularized Euler equations

We shall be dealing with a different approximation of the damped Euler

system, namely, the so-called inviscid damped Euler–Bardina model
{
∂tu + (ū,∇x)ū + γu +∇xp = g,

div u = 0, u(0) = u0, ū = (1 − α∆x )
−1u.

The system is studied for d = 2,3
1) on the torus Ω = T

d = [0,L]d . In this case the standard zero mean

condition is imposed on u, ū and g;

2) in the whole space Ω = R
d ;

3) in a bounded domain Ω ⊂ R
d with Dirichlet boundary conditions for

ū. Then ū is recovered from u solving the Stokes problem
{
(1 − α∆x )ū +∇xq = u,

div ū = 0, ū|∂Ω = 0.

Here α = α′L2 and α′ > 0 is a small dimensionless parameter, so that

ū is a smoothed (filtered) vector field.
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The phase space with respect to ū is the Sobolev space H1 with

divergence free condition

ū ∈ H1 :=





Ḣ1(Td), x ∈ T
d ,
∫
Td ū(x)dx = 0,

H1(Rd), x ∈ R
d ,

H1
0(Ω), x ∈ Ω,

div ū = 0,

and in terms of u, respectively,

u ∈ H−1 := (1 −∆x)H
1 = H−1 ∩ {div u = 0}.

We write the equation as an evolution equation in H1:

∂t ū + B(ū, ū) + γū = ḡ,

div ū = 0, ū(0) = ū0, u = (1 − α∆x )ū,

where

B(ū, v̄) = (1 − αΠ∆x )
−1((ū,∇x)v̄),

Π — is the Helmholtz–Leray projection, Π∆x — is the Stokes operator.
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Evolution equation in H1

The bilinear operator B is smoothing in H1:

B : H1 × H1 → H2−ε, ε > 0, d = 2, B : H1 × H1 → H3/2, d = 3.

The equation is written as an evolution equation in H1 with bounded

coefficients. Hence, the local in time existence of a unique solution is

straightforward consequence of the Banach contraction principle, and

the global existence follows from the a priori estimate

‖ū(t)‖2
α ≤ ‖ū(0)‖2

αe−γt +
1

γ2
‖g‖2

L2 ,

where

‖ū‖2
α := ‖ū‖2

L2 + α‖∇x ū‖2
L2 .

Thus, the solution semigroup S(t) : H1 → H1, S(t)ū0 = ū(t) is well

defined, where ū(t) is the solution at time t .
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Main result 1: upper bounds

Theorem

Let d = 2. In each case of BC the system possesses a global attractor

A ⋐ H1 with finite fractal dimension satisfying

dimF A ≤ 1

8π
·





1

αγ4
min

(
‖ rot g‖2

L2 ,
‖g‖2

L2

2α

)
, x ∈ T

2, x ∈ R
2,

‖g‖2
L2

2α2γ4
, x ∈ Ω ⊂ R

2.

In the 3D case d = 3 the estimate in all tree cases looks formally the

same

dimF A ≤ 1

12π

‖g‖2
L2

α5/2γ4
.
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Main result 2: Kolmogorov flows and lower bounds

The lower bounds are based on the on the instability analysis of the

generalized Kolmogorov flows. Let

gs(x2) = (γλ(s) sin sx2,0)
T , gs(x3) = (γλ(s) sin sx3,0,0)

T

be the right-hand sides in our system on T
2 = [0,2π]2 and

T
3 = [0,2π]3, respectively. Here s ∈ N, s ≫ 1, and λ is the amplitude.

The corresponding staionary solutions are

us(x2) = (λ(s) sin sx2,0)
T , us(x3) = (λ(s) sin sx3,0,0)

T .
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Theorem

For λ ≥ λ(s), where

λ(s) = c1γ
(1 + αs2)2

s
,

and ci are absolute (effectively computable) constants the stationary

solutions are unstable and

dimMun(us) ≥ c2s2, d = 2; dimMun(us) ≥ c3s3, d = 3. (0.1)

Corollary

Under the above assumptions

dimF A ≥ c6





max

(
‖ rot gs‖2

L2

αγ4
,
‖gs‖2

L2

α2γ4

)
, x ∈ T

2,

‖gs‖2
L2

α5/2γ4
, x ∈ T

3.

A.A. Ilyin (IPM) Damped regularized Euler equations 25 May, 2021 12 / 36



Since

Mun ⊂ A ⇒ dim A ≥ dimMun

it remains to express the number of unstable eigenmodes in terms of

the physical parameters. The system is studied in the limit as α→ 0+

We set

s =
1√
α
.

Then λ and ‖gs‖2
L2 become

λ = c4γ
√
α, ‖gs‖2

L2 = c5γ
4α,

and we obtain as a result

dimF A ≥ c3s3 = c3
1

α3/2
= c3

α‖gs‖2
L2

α5/2‖gs‖2
L2

= c3

α‖gs‖2
L2

α5/2c5αγ4
,

which proves the lower bound for T3.

For T2 we see that λ ∼ γ
√
α and ‖ rot gs‖2

L2 ∼ γ4 and as before

‖gs‖2
L2 ∼ γ4α. Arguing similarly we obtain the lower bound for T2.
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A priori estimates

Proposition

Let u be a sufficiently regular solution of our equation. Then the

following dissipative energy estimate holds:

‖ū(t)‖2
α ≤ ‖ū(0)‖2

αe−γt +
1

γ2
‖g‖2

L2 ,

where

‖ū‖2
α := ‖ū‖2

L2 + α‖∇ū‖2
L2 .

Taking the scalar product with ū, integrating over Ω we obtain

d

dt

(
‖ū‖2

L2 + α‖∇x ū‖2
L2

)
+ 2γ

(
‖ū‖2

L2 + α‖∇x ū‖2
L2

)
= 2(g, ū) ≤

≤ 2‖g‖L2‖ū‖L2 ≤ γ‖ū‖2
L2 +

1

γ
‖g‖2

L2 .

Applying the Gronwall inequality we complete the proof.
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Corollary

Let u be a sufficiently smooth solution. Then the following estimate

holds (d = 2,3 any type of the domain):

lim sup
t→∞

1

t

∫ t

0

‖∇u(s)‖L2 ds ≤ 1

γ
√

2α
‖g‖L2 .

Indeed, integrating the differential inequality over t , taking the limit

t → ∞ and using the fact that ‖u(t)‖2
α remains bounded, we arrive at

we obtain

lim sup
t→∞

1

t

∫ t

0

‖∇u(s)‖2
L2 ds ≤ 1

2αγ2
‖g‖2

L2 .

Using after that the Hölder inequality

1

t

∫ t

0

‖∇u(s)‖L2 ds ≤
(

1

t

∫ t

0

‖∇u(s)‖2
L2 dx

)1/2

,

we complete the proof.
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Use of vorticity equation for T2 and R
2

Corollary

Let Ω = T
2 or R2 and let u be a sufficiently smooth solution of our

problem. Then the following estimate holds:

lim sup
t→∞

1

t

∫ 1

0

‖∇ū(s)‖L2 ds ≤ 1

γ
min

{
‖ curl g‖L2 ,

‖g‖L2√
2α

}
.
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Upper bound

Theorem

Suppose that Ω is either the 3D torus T
3, or a bounded domain Ω ⊂ R

3

(endowed with Dirichlet BC), or the whole space Ω = R
3. Let

g ∈ [L2(Ω)]d (in the case of T3 we also assume that g has zero mean).

Then the global attractor A corresponding to the regularized damped

Euler system has finite fractal dimension satisfying the following

estimate:

dimF A ≤ 1

12π

‖g‖2
L2

α5/2γ4
.
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The linearized operator:

∂t θ̄ = −γθ̄ − B(ū(t), θ̄)− B(θ̄, ū(t)) =: Lu(t)θ̄,

div θ̄ = 0, θ̄
∣∣
t=0

= θ̄0 ∈ H1(Ω),

where B(ū, v̄) := ΠAα ((ū,∇x )v̄). In order to utilize the well-known

cancelation property

(ū,∇x )θ̄, θ̄) ≡ 0

for the inertial term in the Navier-Stokes equations, it is natural to

endow the space H1 with the scalar product

(θ̄, ξ̄)α = (θ̄, ξ̄) + α(∇x θ̄,∇x ξ̄) = ((1 − αA)θ̄, ξ̄).

Then we get the cancelation

(B(ū, θ̄), θ̄)α =
(
(1 − α∆x )

−1(ū,∇x )θ̄, (1 − α∆x )θ̄
)
= ((ū,∇x )θ̄, θ̄) ≡ 0
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We estimate the global Lyapunov exponents which control the

dimension:

q(n) := lim sup
t→∞

sup
u(t)∈A

sup
{θ̄j}n

j=1

1

t

∫ t

0

n∑

j=1

(Lu(τ)θ̄j , θ̄j)αdτ,

where the first (inner) supremum is taken over all orthonormal families

{θ̄j}n
j=1 with respect to the scalar product (·, ·)α in H1:

(θ̄i , θ̄j)α = δi j , div θj = 0,

and the second (middle) supremum is over all trajectories u(t) on the

attractor A . Then, using the cancellation mentioned above together

with the pointwise estimate

n∑

j=1

(Lu(t)θ̄j , θ̄j)α = −
n∑

j=1

γ‖θ̄j‖2
α −

n∑

j=1

((θ̄j ,∇x )ū, θ̄j) ≤

≤ −γn +

√
2

3

∫

Ω
ρ(x)|∇x ū(t , x)|dx ≤ −γn +

√
2

3
‖∇x ū(t)‖L2‖ρ‖L2 ,
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where

ρ(x) =

n∑

j=1

|θ̄j(x)|2.

We now use estimate

‖ρ‖L2 ≤ 1

2
√
π

n1/2

α3/4

and obtain
n∑

j=1

(Lu(t)θ̄j , θ̄j)α ≤ −γn +
1√
6π

n1/2

α3/4
‖∇x ū(t)‖L2 .

Finally, using the estimate on the attractor , we arrive at

q(n) ≤ −γn +
1

2
√

3π

n1/2

α5/4

‖g‖L2

γ
.

It only remains to recall that, according to the general theory, any

number n∗ for which q(n∗) ≤ 0 an upper bound both for the Hausdorff

and the fractal dimension of the global attractor A . This gives the

desired estimate

dim A ≤ 1 ‖g‖2
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q(n) ≤ −γn +
1

2
√

3π

n1/2

α5/4

‖g‖L2

γ
.

Therefore

dimF A ≤ 1

12π

‖g‖2
L2

α5/2γ4
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Spectral inequalities

Theorem

Let Ω ⊆ R
d be an arbitrary domain. Let a family of vector functions

{θ̄i}n
i=1 ∈ H1(Ω) with div θ̄i = 0 be orthonormal with respect to the

scalar product

m2(θ̄i , θ̄j)L2 + (∇θ̄i ,∇θ̄j)L2 = m2(θ̄i , θ̄j)L2 + (curl θ̄i , curl θ̄j)L2 = δij ,

Then the function ρ(x) :=
∑n

j=1 |θ̄j(x)|2 satisfies

‖ρ‖L2 ≤ 1

2
√
π

n1/2

m
, d = 2,

‖ρ‖L2 ≤ 1

2
√
π

n1/2

m1/2
, d = 3.
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We first let Ω = R
d and introduce the operators

H = V 1/2(m2 −∆x )
−1/2Π, H

∗ = Π(m2 −∆x)
−1/2V 1/2

acting in [L2(Rd )]d , where V ∈ L1(Rd ) is a non-negative scalar function

which will be specified below and Π is the Helmholtz–Leray projection.

We define a compact self-adjoint operator K

K = H
∗
H : [L2(Rd)]d → [L2(Rd)]d .

Then

Tr K2 =Tr
(
Π(m2 −∆x)

−1/2V (m2 −∆x )
−1/2Π

)2
≤

≤ Tr
(
Π(m2 −∆x)

−1V 2(m2 −∆x )
−1Π

)
=

= Tr
(

V 2(m2 −∆x)
−2Π

)
,

where we used the Araki–Lieb–Thirring inequality for traces

Tr(BA2B)p ≤ Tr(BpA2pBp), p ≥ 1,

and the cyclicity property of the trace together with the facts that Π
commutes with the Laplacian and that Π is a projection: Π2 = Π.
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We want to show that

Tr K2 ≤





1

4π

1

m2
‖V‖2

L2 , d = 2;

1

4π

1

m
‖V‖2

L2 , d = 3.

The fundamental solution of (m2 −∆x)
2Π in R

d is a d × d matrix

Fd
ij (x) = Gd(x)δij − ∂xi

∂xj
∆−1Gd(x)

with R
d -trace at x ∈ R

d

TrRd Fd(x) = dGd(x)−
d∑

i=1

∂2
xi xi

∆−1
x Gd(x) = (d − 1)Gd(x),

where Gd(x) is a fundamental solution of the scalar operator

(m2 −∆x)
2 in the whole space R

d :

Gd (x) =
1

(2π)d

∫

Rd

eiξxdξ

(m2 + |ξ|2)2
=





1

8π

1

m
e−|x|m, d = 3;

1

4π

1

m2
|x |mK1(|x |m), d = 2.
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Stein, Watson

G2(x)=
1

2π
F

−1
(
(m2+|ξ|2)2

)
=

1

2π

∫ ∞

0

J0(|x |r)rdr

(m2 + r2)2
=

1

4π

1

m2
|x |mK1(|x |m),

where K1 is the modified Bessel function of the second kind.

Thus, the operator V 2(m2 −∆x)
2Π has the matrix-valued integral

kernel

V (y)2Fd(x − y)

and therefore

Tr(V 2(m2 −∆x)
2Π) =

=

∫

Rd

TrRd

(
V (y)2 Fd(0)

)
dy = (d − 1)‖V‖2

L2Gd(0)

which the first inequality , and also the second one, since

(tK1(t))|t=0 = 1.
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We can now complete the proof as in in the original paper by E.Lieb.

Setting

ψi := (m2 −∆x )
1/2θ̄i ,

we see that {ψj}n
j=1 is an orthonormal family in L2. We observe that

∫

Rd

ρ(x)V (x)dx =
n∑

i=1

‖Hψi‖2
L2 ,

and in view of orthonormality of the ψj ’s in L2 we obtain

n∑

i=1

‖Hψi‖2
L2 =

n∑

i=1

(Kψi , ψi) ≤
n∑

i=1

‖Kψi‖L2 ≤ n1/2

(
n∑

i=1

‖Kψi‖2
L2

)1/2

=

= n1/2

(
n∑

i=1

(K2ψi , ψi )

)1/2

≤ n1/2
(

Tr K2
)1/2

.

This gives ∫

Rd

ρ(x)V (x)dx ≤ n1/2
(

Tr K2
)1/2

.
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Setting V (x) := ρ(x) and using

Tr K2 ≤





1

4π

1

m2
‖V‖2

L2 , d = 2;

1

4π

1

m
‖V‖2

L2 , d = 3.

we complete the proof of for the case of Ω = R
d , d = 2,3.

For a proper domain we use extension be zero which works nicely

here. The theorem is proved.
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Corollary

Let the assumptions of the Theorem hold and let {θ̄j}n
j=1, div θ̄j = 0 be

an orthonormal system with respect to

(θ̄i , θ̄j)L2 + α(∇θ̄i ,∇θ̄j)L2 = δij .

Then ρ(x) =
∑n

j=1 |θ̄j(x)|2 satisfies

‖ρ‖L2 ≤ 1

2
√
π

n1/2

α1/2
, d = 2,

‖ρ‖L2 ≤ 1

2
√
π

n1/2

α3/4
, d = 3.

Indeed, this statement follows from that with m2 by the proper scaling.
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Spectral inequalities on T2 and T
3

Now Gd(x) = Gd ,m(x) is the fundamental solution of the scalar

operator (m2 −∆x)
−2 on the torus T

d (with zero mean condition), so

the integral should be replaced by the corresponding sum over the

lattice Z
d
0 = Z

d \ {0}:

Gd(x) =
1

(2π)d

∑

k∈Zd
0

eik .x

(m2 + |k |2)2

and we have to show that

Gd ,m(0) <





1

8π

1

m
, d = 3;

1

4π

1

m2
, d = 2.

In other words, we have to show that
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Estimates for lattice sums

m
∑

k∈Z3
0

1

(|k |2 + m2)2
< π2 d = 3

m2
∑

k∈Z2
0

1

(|k |2 + m2)2
< π d = 2.
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Lemma

For m ≥ 0

F (m) := m2
∑

k∈Z2
0

1

(|k |2 + m2)2
< π.

We assume that m ≥ 1. We show below that the inequality holds for

m ≥ 1, which proves the Lemma, since F ′(m) > 0 on m ∈ (0,1] and F

is increasing on m ∈ [0,1].
We use the Poisson summation formula

∑

k∈Zd

f (k/m) = (2π)d/2md
∑

k∈Zd

f̂ (2πkm),

where F(f )(ξ) = f̂ (ξ) = (2π)−n/2
∫
Rn f (x)e−iξxdx . For the function

f (x) = 1/(1 + |x |2)2, x ∈ R
2, with

∫
R2 f (x)dx = π, this gives

F (m) =
1

m2

∑

k∈Z2

f (k/m) − 1

m2
f (0) = π − 1

m2
+ 2π

∑

k∈Z2
0

f̂ (2πmk).
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Since f is radial we have

f̂ (ξ) =

∫ ∞

0

J0(|ξ|r)rdr

(1 + r2)2
=

|ξ|
2

K1(|ξ|),

where K1 is the modified Bessel function of the second kind.

Therefore we have to show that

∑

k∈Z2
0

G(2πm|k |) < 1

m2
, G(x) = πxK1(x).

Next, we use the estimate

K1(x) <

(
1 +

1

2x

)√
π

2x
e−x , x > 0,

which gives

G(2πm|k |) < π

(
π
√

m|k |+ 1

4
√

m|k |

)
e−2πm|k |.
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For the first term we use that

√
xe−ax ≤ 1√

2ea

with a = 1
2πm and x = |k | (and keep three quarters of the negative

exponent), while for the second term we just replace 1/
√

m|k | by 1,

since m ≥ 1 and k ≥ 1. This gives

G(2πm|k |) < π

(√
π

e
e−3πm|k |/2 +

1

4
e−2πm|k |

)
.

Furthermore, we use that |k | ≥ 1√
2
(|k1|+ |k2|) and, therefore,

G(2πm|k |) < π

(√
π

e
e

−3πm(|k1|+|k2|)
2
√

2 +
1

4
e−

√
2πm(|k1|+|k2|)

)
.
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Thus, summing the geometric power series, we end up with

F (m) < π − 1

m2
+ π

√
π

e

(
4

(e
3π

2
√

2
m − 1)2

+
4

e
3π

2
√

2
m − 1

)
+

+
π

4

(
4

(e
√

2πm − 1)2
+

4

e
√

2πm − 1

)

and finally show that

− 1

m2
+ π

√
π

e

(
4

(e
3π

2
√

2
m − 1)2

+
4

e
3π

2
√

2
m − 1

)
+

+
π

4

(
4

(e
√

2πm − 1)2
+

4

e
√

2πm − 1

)
< 0

for m ≥ 1.
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A poinwise estimate

Proposition

Let for some x ∈ R
d , u(x) ∈ R

d and div u(x) = 0. Then

| ((θ,∇x )u, θ) (x)| ≤
√

d − 1

d
|θ(x)|2|∇xu(x)|,

where ∇xu(x) is a d × d matrix with entries ∂iuj , and

|∇xu|2 =

d∑

i ,j=1

(∂iuj)
2.
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Thank you for your attention
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