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BASED ON:

1) my own work, starting late 1990’s, on turbulence in the complex Ginzburg-Landau

equation;

2) works of my former PhD students Andrey Biriuk and Alex Boritchev on turbulence in

Burgers equation;

3) my book with A. Boritchev “ 1d turbulence and the stochastic Burgers equation”

(will appear next month in the AMS Publications).
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§1. K41 THEORY

The K41 theory of turbulence was created by A. N. Kolmogorov in three articles, published

in 1941 (partially based on the previous work of Taylor and von Karman–Howard). It

describes statistical properties of turbulent flows and is now the most popular theory of

turbulence. I will refer to it for the case of a fluid flow u(t, x) of order 1, space–periodic of

period 1. Then the Reynolds number of the flow is

Rey = ν−1,

where ν is the viscosity. If Rey is large, then the velocity field u(t, x) of the flow becomes

very irregular, i.e. turbulent.

All constants in my talk are independent from ν (so also from Rey).

Kolmogorov: short scale in x features of a turbulent flow u(t, x) display a universal

behaviour which depends on particularities of the system only through a few parameters.
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The K41 theory is statistical. That is, it assumes that the velocity field u(t, x) depends on

a random parameter ω ∈ (Ω,F ,P). Moreover, Kolmogorov assumes that the random

field uω(t, x) is stationary in time and homogeneous. It means that statistically uω(t, x)

and uω(t+ C1, x+ C2), where C1, C2 are constants, is the same random field.

Kolmogorov studies short space-increments

u(t, x+ r)− u(t, x), |r| � 1,

and examines moments of these random variables as functions of |r|. Similar, he takes

the Fourier coefficients û(t, s) of u(t, x) and studies their second moments as functions

of |s|.

The K41 theory admits a natural 1d version. I will mostly talk about it, will formulate 1d

versions of the Kolmogorov claims, prove them for a 1d model, given by the Burgers

equation, and then will discuss the corresponding 3d assertions of K41.

Taking the Burgers equation for a model for 1d turbulence I follow Burgers, Frisch and

Sinai.
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§2. THE EQUATION.

The approach I will present applies to the deterministic Burgers equation

ut(t, x) + uux − νuxx = 0, t ≥ 0, x ∈ S1,

∫
u dx = 0, 0 < ν ≤ 1,

u(0, x) = u0(x) ∼ 1, 1 ≤ t ≤ 10.

Or to the stochastic equation

ut + uux − νuxx = ∂tξ(t, x), u(0, x) = u0(x),

∫
u dx =

∫
η dx = 0,(B)

where η = ∂tξ(t, x) and ξ is a Wiener process in the space of functions of x,

ξω(t, x) =
∑

s=±1,±2,...

bsβ
ω
s (t)es(x), B0 :=

∑
s

b2s <∞.

Here {es, s = ±1,±2, . . . } is the trigonometric basis in the space of periodic function

with zero mean, {βωs (t)} are standard independent Brownian processes and {bs} are

real numbers, fast converging to zero. So ξω(t, x) is a smooth function of x. While as a

function of x it is a white noise.
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I like more the picture, given by the stochastic equation (B) since it is closer to

Kolmogorov’s insight, and will talk about it, avoiding stochastic tricks. I will understand the

solutions of (B) trajectory-wise. For any ω the function ξω(t, x) defines a curve

ξω(t, ·) ∈ C(R+, H
s), ∀ s,

and uω(t, x) is a solution of (B) if ∀ω,

uω(t)− u0 +

∫ t

0

(uux − νuxx) ds = ξ(t), ∀ t ≥ 0.

Not hard to see that if u0 ∈ Hr, r ≥ 1, then there is a unique solution

uω ∈ C(R+, H
r) of (B). It depends on the random parameter ω, and I will systematically

average in ω various functionals f of solutions u. – This is the logic of the theory of

turbulence. So my goal is to study various quantities

Ef(u(t, ·)) =

∫
Ω

f(uω(t, ·))P(ω), f : Hr → R.

I will regard solutions uνω(t, x) of (B) as curves u(t) ∈ L2(S1), depending on ω. I.e.

as a random processes in L2 (or in some Sobolev space).

6



I will soon explain that, in average, each solution uω(t, x) of (B) is of order one. That is,

For any u0, E‖u(t)‖2L2
∼ 1 uniformly in t ≥ C > 0 and ν ∈ (0, 1], for every C > 0.

Since the order of magnitude of a solution uν equals
√
E‖uν(t)‖2L2

∼ 1, then the

solutions u are∼ 1 and their space-period is one. Thus the Reynolds number of each u is

Rey(uν) ∼ ν−1. So (B) with small ν describes 1d turbulence, called by Uriel Frisch

burgulence.

THE GOALS are: 1) to study the solutions uνω(t, x) for small ν and for 0 < t ≤ ∞,

2) to relate the obtained results with the K41 theory, regarding the Burgers equation (B) as

a 1d model for turbulence.
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Inspired by the heuristic work on the stochastic Burgers equation by U. Frisch with

collaborators, Sinai and others in the paper

E, Khanin, Mazel, Sinai Invariant measures for Burgers equation with stochastic forcing,

Ann. Math. 151, 877-960 (2000)

used the Lax-Oleinik formula to write down the limiting dynamics of (B) as ν → 0, and

next studied the obtained limiting random field u(t, x). In this way they arrived at a

beautiful theory and solved the problem 1) above, but their solution does not allow to obtain

the relations, claimed by the theory of turbulence.

On the contrary, we study (B) for small but POSITIVE ν, i.e. when

not ν → 0, but 0 < ν � 1,

using basic tools from PDEs and stochastic processes. This approach allows to get

relations, similar to those, claimed by the K41 theory. Our results rigorously justify the

heuristic theory of 1d turbulence, built in the paper

Aurell, Frisch, Lutsko, Vergassola, J. of Fluid Mechanics, 238, 467–486, 1992.
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§3. APRIORY ESTIMATES (= upper bounds for the norms).

The key starting point is the Oleinik-Kruzkov inequality, which we apply to solutions of (B)

with fixed ω. The inequality was proved by O–K for the free Burgers equation, but their

argument applies to the stochastic equation (B) trajectory-wise, and implies the following:

THEOREM O-K. For ANY initial data u0, any p ≥ 1 and any ν, θ ∈ (0, 1], uniformly in

t ≥ θ we have:

(O-K) E
(
|uν(t, ·)|p∞ + |uνx(t, ·)|p1

)
≤ Cθ−p.

The constant C depends only on the random force (NOT on ν and NOT on u0 !).

Idea of the proof: If ξ is zero, consider w = tux, find a point where it takes maximal value

at the cylinder S1 × [0, T ], and write there the condition of maximality. If ξ is not zero,

take v = u− ξ, denote w = tvx, and do the same.
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This very powerful estimate, jointly with some PDE tricks, allows to bound from above

moments of all Sobolev norms of solutions:

THEOREM 1. For any u0, every m ∈ N, 0 < ν ≤ 1 and every θ > 0,

E‖uν(t)‖2m ≤ C(m, θ)ν−(2m−1) if t ≥ θ.

Remark. For m = 0 this is wrong, and instead then we have E‖uν(t)‖20 ∼ 1.

10



§4. LOWER BOUNDS FOR MOMENTS OF SOBOLEV NORMS OF SOLUTIONS.

For the stochastic equation (B) the Balance of Energy Relation for solutions takes the

following nice form:

E
∫

1
2 |u(T+σ, x)|2dx−E

∫
1
2 |u(T, x)|2dx+νE

∫ T+σ

T

∫
|ux(s, x)|2dxds = σB0,

where T, σ > 0 and B0 =
∑
b2s > 0.

Let T ≥ 1. Then by Oleinik-Kruzkov, the first two terms are bounded by a constant C∗,

which depends only on the random force. If σ ≥ σ∗ = 4C∗/B0, then C∗ ≤ 1
4σB0 and

we get that

νE
1

σ

∫ T+σ

T

∫
|uνx(s, x)|2dxds ≥ 1

2B0.
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For any random function fω(t) (i.e. for a random process f ) I will denote by 〈〈f〉〉 its

averaging in ensemble and local averaging in time,

〈〈f〉〉 = E
1

σ

∫ T+σ

T

f(s) ds, where T ≥ 1, σ ≥ σ∗ are parameters.

In this notation we have just proved that

〈〈‖uν‖21〉〉 ≥ ν−1 1
2B0.

But by Theorem 1 〈〈‖uν‖21〉〉 ≤ ν−1C ! So

〈〈|uνx|2L2
〉〉 = 〈〈‖uν‖21〉〉 ∼ ν−1,

where∼ means that the ratio of two quantitis is bounded from below and from above,

uniformly in ν and in T ≥ 1 and σ ≥ σ∗, entering the definition of the brackets 〈〈·〉〉.
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Now the Gagliardo-Nirenberg interpolation inequality + Oleinik-Kruzkov imply:

〈〈|uνx|2L2
〉〉
G−N
≤ C ′m〈〈‖uν‖2m〉〉

1
2m−1 〈〈|uνx|2L1

〉〉
2m−2
2m−1

O−K
≤ Cm〈〈‖uν‖2m〉〉

1
2m−1

Using the already obtained lower bound for the averaged first Sobolev norm,

〈〈‖uν‖21〉〉 ≥ ν−1B0/2, we get from here a lower bound for ‖uν‖m:

〈〈‖uν‖2m〉〉 ≥ C ′′mν−(2m−1) ∀m ≥ 1.

Combining this with the upper bound in Theorem 1, we get:

THEOREM 2 (Sobolev norms of solutions). For any u0, any 0 < ν ≤ 1 and every m ∈ N
,

(Basic Estimate ) 〈〈‖uν‖2m〉〉 ∼ ν−(2m−1).

This theorem and the Oleinik–Kruzkov result turns out to be a powerful and efficient tool to

study the turbulence in the 1d Burgers equation (B) (the burgulence).

Open problem. Prove (or disprove) that 〈〈‖uν‖2m〉〉 admits an asymptotic expansion:

〈〈‖uν‖2m〉〉 = Cmν
−(2m−1) + o(ν−(2m−1)).
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§5. Burgulence: the dissipation scale

I recall that I write u(t, x) as Fourier series
∑
s=±1,±2,...ûs(t)es(x) in the trig. basis.

By a direct analogy with K41, the basic quantity characterising a solution u(t, x) as a 1d

turbulent flow is its dissipation scale ld, a.k.a. Kolmogorov’s inner scale. We define it in the

Fourier presentation as :

ld is the smallest number of the form ld = ν−cd , cd > 0, such that for |s| � ld the

avaraged squared norm of the s-sth Fourier coefficient ûs(t) decays very fast.

Namely, for any N ∈ N and γ > 0 there exists a CN,γ such that

〈〈|ûs(t)|2〉〉 ≤ CN,γ |s|−N , ∀ |s| ≥ ν−cd−γ ,

Theorem 2 and a Tauberian argument imply:

THEOREM 3. The dissipation space-scale ld of any solution u of (B) equals ν−1.
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i) In physics, the dissipative scale ld is defined modulo a constant factor, so for Burgers

ld =Const ν−1.

ii) In K41 the hydrodynamical dissipative scale is predicted to be lKd = ν−3/4.

iii) For the Burgers equation, Burgers hinself predicted the correct dissipative scale

ld = ν−1.

In the theory of turbulence ranges are zones, specifying the size of the involved Fourier

modes s and of increments of x:
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Recall that for (B), ld = Const ν−1. Here C > 0 depends only on the random force.
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§6. Burgulence: moments of small-scale increments.

Small-scale increments: |u(x+ l)− u(x)|, x ∈ S1, |l| � 1.

Their moments are

〈〈|u(x+ l)− u(x)|p〉〉 =: Sp(l;u), p > 0.

Function (l, p) 7→ S is called the structure function (corresponding to a solution u).

Recall that inertial range in x is [l−1
d , C] = [C1ν, c], and dissipation range in x is

(0, l−1
d ] = (0, C1ν]. The function S obeys the following law:

THEOREM 4. For |l| in the inertial range [C1ν, c] we have

Sp(l;u
ν) ∼ |l|p if 0 < p ≤ 1,

Sp(l;u
ν) ∼ |l| if p ≥ 1.

(1)

While for |l| in the dissipation range [0, C1ν],

(2) Sp(l, u
ν) ∼ |l|pν1−min(p,1), ∀ p > 0.
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〈〈|u(x+ l)− u(x)|p〉〉 =: Sp(l;u), p > 0.

U.Frisch with collaborators obtained the first assertion in the theorem above :

Sp(l;u
ν) ∼ |l|min(1,p) for p > 0, |l| ∈ [c1ν, c],(1)

by a convincing heuristic argument in

Aurell, Frisch, Lutsko, Vergassola, J. of Fluid Mechanics, 238, 467–486, 1992.

We rigorously derive (1) and (2) from Theorem 2 (Sobolev norms of solutions) and

Oleinik-Kruzkov, using some ideas from the paper above.

For water turbulence the K41 theory predicts that in the inertial range we have

(1/3 law ) Sp(l) ∼ |l|p/3, |l| ∈ [Cν3/4, C1].

This is the celebrated 1/3 law of the K41 theory. It claims that – in a sense – the sizes of

increments |u(x+ l)− u(x)| behaves as |l|1/3 for |l| in the inertial range .

From the point of view of K41, the obtained law (1) presents an ”abnormal scaling”.

For which p does the 1/3-law holds?
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DISCUSSION. In the Kolmogorov setting u is a homogeneous random field, and

Sp(l) = E|u(x+ l)− u(x)|p

– no need to average in x and in t This is the p-th moment of the random variable

u(x+ l)− u(x). The 1/3-law tells us that

Sp(l)
1/p

Sq(l)1/q
∼ Cp,q ∀ p, q > 0,

even for tiny |l|, when the random variable u(x+ l)− u(x) is very small. Relation above

would hold, with absolute constants Cp,q , if u(x+ l)− u(x) was a Gaussian random

variable. But u(x+ l)− u(x) certainly is not Gaussian - this is suspicious!

In our case, for burgulence,

Sp(l)
1/p

Sq(l)1/q
∼ Cp,q |l|1/p−1/q,

which is big for small l if p > q. This is a “very non-Gaussian behaviour” (the function

above with p = 4, q = 2 is called flatness of the random variable u(x+ l)− u(x)).
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§7. Burgulence: distribution of the energy along spectrum.

The second celebrated law of the Kolmogorov theory deals with the distribution of the

energy 〈〈 12
∫
|u|2dx〉〉 along the spectrum. For a solution u(t, x), regarded as a 1d

turbulent flow, consider 1
2 〈〈|ûs|

2〉〉. By Parseval’s identity,

〈〈 12
∫
|u|2dx〉〉 =

∑
s

1
2 〈〈|ûs|

2〉〉.

So the quantities 1
2 〈〈|ûs|

2〉〉 characterise distribution of the energy along the spectrum.

Next, for any k ∈ N define Ek(u) as the averaging of 1
2 〈〈|ûs|

2〉〉 along the layer Jk
around k, Jk = {n ∈ Z∗ : M−1k ≤ |n| ≤Mk}, i.e.

Ek(u) = 〈〈ek(u)〉〉, ek(u) =
1

|Jk|
∑
n∈Jk

1
2 |ûn|

2;

ek(u) is the averaged energy of the k-th mode of u. The function k 7→ Ek is called the

energy spectrum. It is immediate that for k � ld it decays faster than any negative degree

of k (uniformly in ν). But for k ≤ ld the behaviour of Ek is quite different:
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Theorem on the Structure Function S and a Tauberian argument imply the Spectral Power

Law:

THEOREM 5. For k in the inertial range, 1 ≤ k ≤ C1ν
−1, we have:

(Spectral Power Law ) Ek(uν) ∼ k−2.

For the water turbulence the K41 theory predicts that Ek obeys the celebrated

Kolmogorov–Obukhov law:

(K-O law) Ek ∼ |k|−5/3 for k in the inertial range.

For solutions of (B), Jan Burgers in 1940 (!) predicted that Ek ∼ |k|−2 for

|k| >Const ν−1, i.e. exactly the Spectral Power Law above.
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§8. THE MIXING. The mixing means that in the function space H of functions of x, where

we study the equation, there exists a unique measure µν , such that for any “reasonable”

functional f on H and for any solution uνω(t, x) of (B) we have

Ef(u(t, ·))→
∫
H

f(u)µν(du) as t→∞.

In physics, µν is called a statistical equilibrium for eq. (B).

This holds for (B), and may be derived from a general theory. But then the rate of

convergence would depend on ν. In the same time, in the theory of turbulence it should not

depend on ν, and for (B) it does not!

THEOREM 6. If the functional f(u) is continuous in some Lp–norm, p <∞, then the

rate of convergence above does not depend on ν, and holds at least with the rate

(ln t)−κp .

Recall that ξω(t, x) =
∑
s=±1,±2,... bsβ

ω
s (t)es(x). If bs ≡ b−s, then the random field

ξ(t, x) is homogeneous in x. In this case the measure µν also is homogeneous.
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Stationary solution ust(t) of (B) is a solution such that Dust(t) = µν for all t.

Energy spectrum of the stationary measure µν is

Ek(µν) =

∫
ek(u)µµ(du), ek(u) =

1

|Jk|
∑
n∈Jk

1
2 |ûn|

2.

Obviously,

Ek(µν) = 〈〈ek(ust(t))〉〉 = Eek(ust(t)).

Since 〈〈ek(ust(t))〉〉 satisfies the Spectral Power Law, then Ek(µν) also does:

Ek(µν) ∼ k−2.

Equivalently,

Eek(ust(t)) ∼ k−2 for all t.

This is in the spirit of K41, where the velocity fields u(t, x) are assumed to be stationary

in t (and homogeneius in x).

If the force ξ is such that bs ≡ b−s, then ust(t, x) is stationary in t and homogeneous in

x. – A perfect match for K41!
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§9. THE INVISCID LIMIT. Another remarkable feature of (B) is that, as ν → 0, a solution

uν of (B) converges to an inviscid limit:

uν(t, ·)→ u0(t, ·) in Lp(S
1), a.s.,

for each p <∞. This result is due to Lax–Oleinik (1957). The limit u0(t, x) is called an

“inviscid solution”, or an “entropy solution” of (B) with ν = 0. The limiting function u0(t, x)

even is not continuous. But the structure function and spectral energy are well defined for

Lp–smooth random fields U(x), so they are well defined for u0(t, x). It turns out that

they inherit the laws, proved for uν with ν > 0:

THEOREM 7. For all ν > 0,

1) Ek(u0) ∼ k−2 for all k;

2) Sp(l, u
0) ∼ |l|p if 0 < p ≤ 1, |l| ≤ c, and

Sp(l, u
0) ∼ |l| if p ≥ 1, |l| ≤ c.

Now the energy law for Ek holds for ALL k ≥ 1. So for u0 the dissipation scale ld equals

∞. The inertial range in Fourier becomes all of N, and in x it is the whole interval (0, c].

This theorem describes the inviscid burgulence. It has no analogy in K41.
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CONCLUSIONS. The stochastic Burgers equation with small viscosity makes a consistent

model of 1d turbulence. Its rigorously proved statistical properties make natural and close

analogies for the main laws of the K41 theory

of turbulence. This, once again, supports the belief that the K41 theory is “close to the truth”.
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