
Conference in honor of Alexander Komech's 75th birthday

Soliton asymptotics in hydrodynamics

Alexander Shnirelman

 



1. Soliton is a localized stable structure appearing in a 
solution of certain nonlinear equations. For some 
equations (like KdV, NLS, Maxwell-Schroedinger, ...) 
generic solution behaves at t→∞ as a collection of 
independent solitons. Such collections of finite or 
countable number of solitons form a (weak) attractor of 
such systems. Many works of Alexander Komech are 
devoted to the soliton asymptotics.



2. 2-dimensional hydrodynamics

Consider the motion of 2-d ideal incompressible fluid in
a compart 2-d domain M  (or 2-d torus T 2 ). It is 
described by the Euler equations

∂u
∂ t

+ ∇ u⋅u + ∇ p = 0 ;

∇⋅u= 0 ;
un |∂M = 0.

Let ω = ∇×u = curl u ; then the vorticity equation 
holds:

∂ω
∂ t

+ u⋅∇ω= 0 ,

u = curl−1
ω .

The Lagrangian description: (x , t)→ g t( x)  -  flow map.

Vorticity theorem: 
ω( x , t) = ω0(g t

−1(x))  where ω0=ω |t=0 .



3. Long-time behavior of 2-d ideal flows

Our intuition is not strong enough to guess how the fluid
behaves in a long run. So, we should turn to 
experiments. 

(a) Physical experiment (Clerx et al., 2011). A thin mesh
was dragged through a shallow (3 cm) layer of water in 
a square tray 1m ×1m; the first picture is taken 10 
seconds after initiation, the last one 50 minutes later. 



(b) Numerical simulation.

Euler equations on the unit torus were solved by 
pseudospectral method combined with 4-th order 
Runge-Kutta method in time. The initial vorticity was a 
linear combination of plane waves with the wavelength
λ∼0.05 Here is the picture of vorticity at indicated time

moments.

We see that in both cases the initial configuration of 
several hundred of small vortices degenerates to just a 
couple of large vortices through the cascade process 
of successive mergers. The final configuration of just a 
few large vortices is robust and stable; it is the fluid 
analogue of a soliton.

Our goal is to explain this result from the first principles.



4. Early (and, possibly, wrong) theories.

(a) "Statistical theory"  (Miller-Robert, Sommeria, ...) The
system is approximated by a finite-dimensional, or even
a finite, discrete-time system of size (dimension, 
number of states) N , and a microcanonical measure
μ  is defined. As N→∞ , the measure is 

concentrated near a single state ū (by the large 
deviations theorem). This state depends on the energy 
and, possibly, some moments of vorticity of the initial 
velocity u0 , and is a stationary of the Euler equations. 
The basic conjecture is that this is the final state of the 
flow.

(b) Mixing theory (Shn.) The vorticity ω  is transported 
by the flow and, in a long run, it is irreversibly mixed, 
while the kinetic energy is conserved. The main 
conjecture is that the mixing goes on until the further 
mixing becomes impossible, i.e. any further mixing 
changes the energy. For any initial vorticity ω0 such 
"maximally mixed" state (I call it "minimal flow") is a 
stationary solution of the Euler equations; in general, it 
is not unique. I conjectured that one of the minimal 
flows is the final state.

Both theories implied that any solution tends to some 
stationary solution as t→∞ . But this conclusion turned
out to be wrong.



5. Accurate numerical simulations show that the flow 
tends to some asymptotic regime, which may be not a 
stationary flow. 

Here is a periodic solution which is a result of a pretty 
long evolution.



In this flow the sets S c(t)={x  | ω( x ,t )≤c }  are 
transported by the flow, but they don't mix: every 
component of S c(t)  keeps its individuality. Those 
"nonmixing" sets have a complicated, hierarchical 
structure; they form "islands", "archipelagos", "lakes", 
etc, and inside an island there may be seen smaller 
islands moving around, and the number of such nested
islands may be arbitrarily large.

Let us give a formal definition.

6. Generalized minimal flows (GMF)

Let V  denote the Yudovich space of incompressible 
vector fields in M  such that  div u=0 , and
curlu∈L∞ . Let S t : V →V  be the 1-parameter group 

of transformations of V  generated by the Euler 
equations. For any u∈V , let O (u) = S R+u  be the 
semi-orbit of u . Let [O (u)]  denote the set of limit 
points of O (u)  in L2 .

Definition. A vector field u∈V  is called a generalized 
minimal flow (GMF) if for any v∈[O(u)] ,
∥curl v∥L2=∥curlu∥L2 . 

Let N  denote the set of all such u .



Conjecture. The set N  is a global L2 - attractor in 
the space V .

This conjecture is true if we replace the dynamics in
V  by some its modification.



7. The long line (Alexandroff's line) as a replacement of 
the time axis

Ordinal is an equivalence class of well ordered sets. If
k , n  are two ordinals, then either k  is an initial 

segment of n , or n  is an initial segment of k , or
k=n .

Let ω1  be the smallest uncountable ordinal; then
ω1= ∪

k  is countable
k .

Alexandroff line  AL=ω1×R
+ ; it is endowed by the 

lexicographic order and the order topology:

Elements of AL  are denoted by τ=(n , t) , n∈ω1 ,
t∈R+ .



8. Pseudoevolution

Let u0∈V ; let S t u0  be the solution of the Euler 
equations with the initial velocity u0 . For any t∈R+  
we define u(0, t )=S t u0  where (0, t)  is regarded as an
element of AL .  If u0∈N , we define u1  as any 
element of [O (u0)] . Otherwise we choose u1∈[O (u0)]

such that ∥curlu1∥L2<∥curl u0∥L2 . Then we define
u (1, t)=S t u1 . Then we define in the same way
u2 , u3 , ... . The field uω0

 is defined as any L2 - limit 
element of the sequence u0 , u1 , ... . At the same time 
we define u(n ,t)  for all n∈ω0 . Then we define
uω0+1 , uω0+2 , ... , and, by the transfinite recursion, we 

define un  and u (n ,t)  for all n∈ω1 , t∈R+ . The 
sequence {an=∥curlun∥L2 }  is defined for all countable 
ordinals n<ω1 .



9. Lemma:  Let {an }  be a monotone non-increasing 
sequence of real numbers defined for all n<ω1 . Then 
there exists an index k<ω1  such that an=ak  for all
n>k .  In other words, the sequence {an }  stabilizes 

after some k<ω0 .

Hence, uk=u(k ,0)∈N , i.e. uk  is a Generalized 
Minimal Flow.

Our solution u (τ)=u (n , t)  undergoes an infinitesimal 
jump, or a "clinamen" (Epicurus, Lucretius) at τ=(n ,0)
for every n<ω1 ; hence the term "pseudoevolution". 
This means that the set N  is actually achieved at 
some moment τ∈AL  (in a sense, Achilles catches up 
with a tortoise).

This is not a proof that N  is an L2 - attractor in a 
usual sense. The question if N  is a "true" attractor 
remains open.



10. Generalized Minimal Flows and Landau damping

Is N  nontrivial, i.e. s.t. (1) N≠∅ , and (2) N≠V ?

(1) N≠∅  because there exist a plenty of stationary 
flows.

(2) J. Bedrosian and N. Masmoudi proved (2013) that 
there exists a smooth perturbation u (x , t) of the 
Couette flow u0( x1 , x2)=(x2 ,0) in the concompact 
domain M=T×R  which is not a parallel flow, but
lim
t→∞

u( x ,t )  is a parallel flow, and curlu becomes 

more and more oscillating as t→∞ . This would mean 
that u∉N , but unfortunately their domain M  in not 
compact. Example in a compact domain is still to be 
constructed.



11. The entropy problem

Soliton asymptotics should make a physicist feel 
uneasy. In fact, they mean that in a conservative 
physical system the diversity of outcomes appears 
much smaller than the diversity of the initial conditions. 
If the initial condition in the corresponding metric space
is random with probability distribution μ0 , then the 
above statement means that the "entropy" of μ0  is 
much larger than that of μt  as t→∞ . 
(Here by the "entropy" I mean any measure of the 
diversity; for example, it may be the ε−δ entropy

H ε ,δ(μ)=inf {H ε(A)  | μ(A)>1−δ}

where H ε  is the Kolmogorov's ε - entropy).

But in a conservative system the entropy cannot 
decrease! Where does it go?



12. The answer: Every time we see the entropy 
decreases, we observe only a part of of the variables 
describing the system. There exist other variables, 
whose entropy increases, so that the total entropy does
not decrease.

Example: expansion of an ideal gas in the empty space

Suppose at some moment we have released some 
mass of an ideal gas in the empty space, and since 
that the gas is freely expanding. 
 



Then the temperature of expanding gaz (in the 
comoving frame) would decrease, together with the 
entropy of the molecules' velocities (which is a purely 
kinematic effect). However, the volume of the gas 
increases, together with the entropy of the molecules' 
positions. As a result, the total entropy does not 
decrease. The entropy is flowing from the momentum to
the position space.

13. But where is the second half of variables describing
the fluid?

The fluid state is described by positions and velocities 
of all its particles: z=(g (x) ,V ( x))  where x∈M  is the
particle label, g∈SDiff (M ) , the group of volume 
preserving diffeomorphisms, and the velocity field
u (x)=V (g−1

( x)) .

Theorem (Y. Eliashberg, T. Ratiu, 1992). If dim(M )=2  
then diameter (in the L2  metric) of the group
SDiff (M )  is infinite.

Hence there is enough space to absorb any amount of 
entropy.



              

          Sasha, my best wishes to you!


