- [ 1
]
A. I. Shnirelman, Convolution
equations in the halfspace, Mat. Sb. (N.S.) 82 (124) (1970), 476-493.
- [ 2
]
A. I. Shnirelman,
The degree of a quasiruled mapping, and the nonlinear Hilbert problem,
Mat. Sb. (N.S.) 89(131) (1972), 366-389, 533.
- [ 3
]
A. I. Shnirelman, Degree of a
quasiruled mapping, and the nonlinear Hilbert problem, Uspehi Mat. Nauk
27 (1972), 257-258.
- [ 4
]
A. I. Shnirelman, Ergodic properties
of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181-182.
- [ 5
]
A. I. Shnirelman, The asymptotic
multiplicity of the spectrum of the Laplace operator, Uspehi Mat. Nauk
30 (1975), 265-266.
- [ 6
]
A. I. Shnirelman,
The geometry of the group of diffeomorphisms and the dynamics of an ideal
incompressible fluid, Mat. Sb. (N.S.) 128(170) (1985), 82-109, 144.
- [ 7
]
A. I. Shnirelman, The principle of the shortest path in the dynamics of
bound systems, in Application of topology in modern analysis
(Russian), Novoe Global. Anal., 124-137, 177, Voronezh. Gos. Univ.,
Voronezh, 1985.
- [ 8
]
A. I. Shnirelman, On the
principle of the shortest way in the dynamics of systems with constraints
[application of topology in modern analysis (Russian), 124-137,
Voronezh. Gos. Univ., Voronezh, 1985], in Global
analysis--studies and applications, II, vol. 1214 of Lecture Notes
in Math., 117-130, Springer, Berlin, 1986.
- [ 9
]
A. B. Pogosyan, E. M. Simkin, E. V. Stremovskii, M. L. Surguchev, and A. I.
Shnirelman, Segregation of
hydrocarbon fluid and water in porous medium in the presence of elastic
waves, Dokl. Akad. Nauk SSSR 307 (1989), 575-577.
- [ 10
]
A. I. Shnirelman,
Attainable diffeomorphisms, Geom. Funct. Anal. 3 (1993), 279-294.
- [ 11
]
A. I. Shnirelman,
On the asymptotic properties of eigenfunctions in the regions of chaotic
motion, in V. F. Lazutkin, KAM theory and semiclassical
approximations to eigenfunctions, vol. 24 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)], 313-337, Springer-Verlag, Berlin, 1993.
- [ 12
]
A. I. Shnirelman,
Lattice theory and flows of ideal incompressible fluid, Russian J. Math.
Phys. 1 (1993), 105-114.
- [ 13
]
A. I. Shnirelman,
Generalized fluid flows, their approximation and applications, Geom.
Funct. Anal. 4 (1994), 586-620.
- [ 14
]
A. Shnirelman, On the non-uniqueness of weak solution of the Euler equations, in Journées “Équations aux Dérivées Partielles”
(Saint-Jean-de-Monts, 1996), Exp. No. XVIII, 10, École
Polytech., Palaiseau, 1996.
- [ 15
]
A. Shnirelman,
Evolution of singularities, generalized Liapunov function and generalized
integral for an ideal incompressible fluid, Amer. J. Math. 119 (1997),
579-608.
- [ 16
]
A. Shnirelman,
On the nonuniqueness of weak solution of the Euler equation, Comm. Pure
Appl. Math. 50 (1997), 1261-1286.
- [ 17
]
I. Polterovich and A. Shnirelman,
An asymptotic
subcone of the Lobachevskii plane as a function space, Uspekhi
Mat. Nauk 52 (1997), 209-210.
- [ 18
]
A. I. Shnirelman,
Weak
solutions of incompressible Euler equations with decreasing energy, in
Séminaire sur les Équations aux Dérivées Partielles,
1996-1997, Exp. No. XVI, 11, École Polytech., Palaiseau, 1997.
- [ 19
]
A. Shnirelman, Weak
solution of incompressible Euler equations with decreasing energy, C.
R. Acad. Sci. Paris Sér. I Math. 326 (1998), 329-334.
- [ 20
]
A. Shnirelman, On the
-instability and
-controllability of steady flows of an
ideal incompressible fluid, in Journées “Équations aux
Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Exp.
No. XIII, 8, Univ. Nantes, Nantes, 1999.
- [ 21
]
A. Shnirelman,
Weak solutions with decreasing energy of incompressible Euler
equations, Comm. Math. Phys. 210 (2000), 541-603.
- [ 22
]
A. Shnirelman,
On the
-instability of fluid flows, in Séminaire: Équations
aux Dérivées Partielles, 1999-2000, Sémin. Équ.
Dériv. Partielles, Exp. No. XIII, 13, École Polytech., Palaiseau,
2000.
- [ 23
]
S. Friedlander and A. Shnirelman,
Instability of
steady flows of an ideal incompressible fluid, in Mathematical fluid
mechanics, Adv. Math. Fluid Mech., 143-172, Birkhäuser, Basel, 2001.
- [ 24
]
A. Shnirelman, Weak
solutions of incompressible Euler equations, in Handbook of
mathematical fluid dynamics, Vol. II, 87-116, North-Holland,
Amsterdam, 2003.
- [ 25
]
A. Shnirelman, Inverse
cascade solutions of the Euler equations, Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 300 (2003), 238-244, 292.
- [ 26
]
A. Shnirelman, Diffeomorphisms, braids and flows, in An introduction to the
geometry and topology of fluid flows (Cambridge, 2000), vol. 47 of NATO Sci. Ser. II Math. Phys. Chem., 253-270, Kluwer Acad. Publ.,
Dordrecht, 2001.
- [ 27
]
A. Shnirelman, Inverse
cascade solutions of the Euler equations, Journal of Mathematical
Sciences 128 (2005), 2818-2821.
- [ 28
]
A. Shnirelman,
Microglobal analysis of the Euler equations, J. Math. Fluid Mech. 7
(2005), S387-S396.
- [ 29
]
A. Morgulis, A. Shnirelman, and V. Yudovich,
Loss of smoothness and
inherent instability of 2D inviscid fluid flows, Comm. Partial
Differential Equations 33 (2008), 943-968.
- [ 30
]
A. Shnirelman, On the analyticity of
particle trajectories in the ideal incompressible fluid (2012).
- [ 31
]
A. Shnirelman,
On the long time behavior of fluid flows, Procedia IUTAM 7 (2013),
151-160.
- [ 32
]
E. Sobol, O. Baum, and A. Shnirelman,
Laser-induced formation of
micro-pores in the tissues for cartilage repair and treatment of
glaucoma, Progress in Biomedical Optics and Imaging - Proceedings of SPIE
9321 (2014), 932102.
- [ 33
]
E. Sobol, A. Shnirelman, O. Baum, I. Sadovsky, and V. Vinokur,
Pore formation in
biological tissues under thermo-mechanical effect of laser radiation,
BS3A.71, 2014.
- [ 34
]
A. Shnirelman, On the butterfly
effect (2016).
- [ 35
]
E. Sobol, O. Baum, A. Shekhter, S. Wachsmann-Hogiu, A. Shnirelman,
Y. Alexandrovskaya, I. Sadovskyy, and V. Vinokur,
Laser-induced micropore formation and modification of cartilage structure in
osteoarthritis healing, Journal of Biomedical Optics 22 (2017), 091515.