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Arithmetic Quantum Chaos 13

Figure 2.3. Density plot of |®(z)|? for eigenstates of the stadium (Black signifies
high density) for eigenvalues v/A = k, where going from top to bottom, k = 110.389,
119.413, 119.417, 119.451, 119.499, 119.512, 119.512, 119.525, 119.547, 119.587,
119.637, 119.672, 119.691, 119.701, 119.740, 119.802, 119.809, 119.839.
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Figure 2.4. Left column, three scarred states of the stadium; right column, the isolated,

unstable periodic orbits corresponding to the scars.
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