
Eigenfunctions on the hyperbolic surfaces: from scars to  
random matrices

1.  The association of the spectrum of Laplacian on the 
surfaces of negative curvature, as well as in the compact 
domains with concave boundaries, with random matrices is 
quite mysterious. After all, those matrices should be made of 
something; they should have rows, and columns, and entries, 
and some kind of randomness -- where is it all? 

This talk presents my attempt to produce a random matrix 
associated with Laplacian on a hyperbolic surface. The main 
character of this story is a scar, i.e. a condensation of an
 eigenfunction around an unstable periodic trajectory.



2. Here is an example of a scar in the bowtie-shaped domain:

Figure 1. Diamond-shaped scar in a bowtie domain.



3.  The very existence of the scars is far from evident. For 
stable periodic trajectories Babich and Lazutkin constructed 
"quasimodes" concentrated in a narrow neighborhood of 
them, and rapidly decreasing with distance from them:

Figure 2. Eigenfunction concentrated along a stable periodic 
trajectory

But how can the energy of an eigenfunction concentrate near 
the unstable trajectory?



To see what happens in this case, consider a model case. 
Consider a hyperbolic surface of revolution:

Figure 3. Minimal trajectory on a hyperbolic surface of 
revolution

Let γ  be the geodesic of minimal length around the neck. 
Suppose the length of γ  is 2π . Let us find the 
eigenfunctions of Laplacian near γ . Let x and y  be 
coordinates along and across γ . The variables separate, and 
we can look for solution of the equation Δ u−λ u=0  in the 
form 

                             u(x , y)=ei k x g (η) .



where η=√k y . The function g (η)  satisfies 
approximately the Weber equation

                                d
2 g

d η
2 +(η2+a) g=0 ,

where a  is such that λ=−k 2
+k a . There are two linearly 

independent solutions, w0(η , a)  (even), and w1(η , a)  
(odd).

There is a principal difference between the eigenfunctions 
concentrated around stable and unstable trajectories. For 
stable trajectories the equation has the form 

                               d
2 g

d η
2 −(η2−a) g=0 ,

and bounded solutions exist only if a=m+1/2 , m≥0 . 
Hence, the eigenvalues are discrete and have the form
λ=−k 2

−(m+1/2)k . 

In contrast to this, the Weber functions are bounded for any
a , and for any λ  there exists a countable set of the Weber 

eigenfunctions around γ , labeled by k .

To have an idea how these eigenfunctions look, I've plotted 
them for a=0 , a=3 , and a=−3 .Here they are:



Figure 4. Scar function for a=0  (a perfect scar).

Figure 5.  Scar function for a=3 (double caustic).



Figure 6. Scar function for a=−3  (transient scar).

The scar in the bowtie domain (figure 1) looks like a transient
scar in our classification.

4. To have a better idea of scars, I drew the Wigner measure 
(or Husimi function) for the above 3 cases (in the transversal 
section in the phase space.



Figure 7. Wigner measure for a=0 (perfect scar).

Figure 8. Wigner measure for a=3  (double caustic).



Figure 9. Wigner measure for a=−3  (transient scar).

The energy in the phase space is concentrated around the 
stable and unstable manifolds I s(γ)  and I u(γ) ; it is 
moved by the phase flow along I s(γ)  to γ , and along
I u(γ)  from γ , and on γ  the energy diffises from
I s (γ)  to I u(γ) :



Figure 10. Stable and unstable manifolds of a trajectory γ .

So, the closed trajectory γ  works as  an open resonator, or a
scatterer, transforming the incoming waves (along the stable 
manifold I s (γ) ) into outgoing waves (along the unstable 
manifold I u(γ) ). It is like a sea shell, where you can hear 
"the sea noise":



Figure 11. Listening to the sea noise in the shell.

5. The above picture holds in a small neighborhood of the 
closed trajectory γ  which shrinks to zero as λ→−∞ . 
What farther happens to the waves, scattered by γ ? They 
keep propagating along I u(γ) until they hit another 
scatterer, namely a homo- or heteroclinic trajectory. Here I 
have to recall some things of the hyperbolic dynamics.

Consider a compact Riemannian surface M  of negative 
curvature (to be sure, we may assume that the curvature is 



constant). Let π1(M )  be its fundamental group, and
h1 , ... , h2 g  its generators ( g  being the genus of M ).

 Consider all sequence ĥ=(hmi
σ i )i=−∞

i=∞ , σ i=±1 ; let Ĥ  be 

the set of all such sequences. For any sequence ĥ∈Ĥ  we 
can define unique trajectory γ( ĥ)  (the "shadowing 
property" discovered by Anosov). If the sequence ĥ  is 
periodic, then the corresponding trajectory γ( ĥ)  is periodic,
too. 

Now suppose that ĥ1  and ĥ2  are two periodic sequences, 

and ĥ=(hmi
σi ) is a sequence such that ĥ=ĥ1  for i<−i0 , 

and ĥ=ĥ2  for i>i0  for some i0 (we can say that ĥ  

connects ĥ1  and ĥ2 ). Then the trajectory γ=γ(ĥ)  tends 

to γ1=γ(ĥ1) as t→−∞ , and to γ2=γ( ĥ2)  as t→∞ . 

Such trajectory is called heteroclinic  if ĥ1≠ĥ2 , and 
homoclinic otherwise. 



Figure 12. Homoclinic and heteroclinic trajectories.

If the sequence ĥ  connects ĥ1  and ĥ2 , then the trajectory

γ=γ(ĥ) lies in the (transversal) intersection of I u(γ1) and

I s(γ2) :



Figure 13. Heteroclinic trajectory as an intersection of 
unstable and stable manifolds.

The heteroclinic trajectory is an open resonator in the way 
similar to the closed trajectories. Hence, the waves reaching
γ  along I u(γ1)  (which is a part of I s(γ) ) are scattered 

into I u(γ)  which is a part of I s(γ2) . Thus part of the 
waves scattered by γ1  can reach γ2  along its stable 
manifold.  

6. Let γ  be a closed trajectory; let l (γ) be its length. Then
the elementary scar function near γ  corresponding to the 
eigenvalue λ  has the form

             uk
γ
( x , y ,λ)=αk

γw0(ηk , ak)+βk
γw1(ηk , ak )

where



w0   and w1  are even and odd solutions of the Weber 
equation; ηk=√2π k / l (γ) y , and ak  is such that

λ=−(2π k /l (γ))
2
+(2π k /l (γ))ak . It is characterized by 

the vector (αk
γ

βk
γ) . In particular, if elementary scar function 

for the above closed trajectory γ1  is described (for given

λ ) by the vector (αk
γ1

βk
γ1) . This wave propagates to γ2

through the intermediate scatterer γ  and excites all 
elementary scar functions of γ2  : the function 
corresponding to the index k '  we have

(αk '
γ2

βk '
γ2)=A(γ1 ,γ ,γ2, k , k ' ,λ)(αk

γ1

βk
γ1)  where A( ...)  is a

2×2 matrix.

Let us collect all vectors (αk
γ

βk
γ) for all closed trajectories γ  

and all k  in an  aggregate ζ ; the space of these aggregates
is denoted by Z . Let us denote by Ξ(γ1 ,γ2)  the set of all 
heteroclinic trajectories connecting γ1  and γ2  
(homoclinic trajectories if γ1=γ2 ). Then we can form a 
matrix S λ  whose each entry is a 2×2 matrix:

S λ(γ1 , k ,γ2 , k ' )= ∑
γ∈Ξ(γ1 , γ2)

A(γ1 ,γ ,γ2 , k , k ' ,λ) .



7. Now I can formulate 

Conjecture: If λ  is an eigenvalue of Laplacian, then the 
equation
            

                                      S λ ζ=ζ

has a nonzero solution in the space Z .

8. In fact, all the above pertains to a model rather than to an 
honest Laplacian. Instead of functions on M  I consider 
collections of scar functions around the closed trajectories. 
This model lies beyond the microlocal analysis, and may 
require new tools.

In conclusion, I'd like to note that this problem is similar to 
the famous Anderson transition problem. It is formulated as 
follows:

Consider the Schrodinger operator Ĥ=εΔ+U (x) , x∈R3 .
Suppose U (x)  is a random potential, for example 
consisting of bumps at random locations. Then, if the 
concentration of bumps is lower than some threshold, the 
system is described by a random matrix (GUE), while if the 
concentration is higher above the threshold, the Anderson 
localization occurs. The link with our case is clear: if the 
concentration is low, the bumps (=scatterers) are "visible" to 
each other, and we can transform the problem to the model 



system consisting of multiple scattering problems where the 
analogue of our matrix S λ  appears. In our case the 
"visibility" of every scatterer (closed trajectory) from any 
other one is absolute (it is warranted by the above symbolic 
dynamical description), so our case may be simpler.

 


